Lecture Series: Part 2 <u>Spectroscopic Ellipsometry</u> and Optical Constants of Crystalline Solids

FA9550-20-1-0135 FA9550-20-F-0005

Stefan Zollner

Head, Department of Physics New Mexico State University Las Cruces, NM, USA

Thanks for support from AFOSR SFFP! Thanks to AFRL/RYDH for hosting my student and me.

BE BOLD. Shape the Future.

Email: <u>zollner@nmsu.edu</u>. WWW: <u>http://femto.nmsu.edu</u>.

Outline: Ellipsometry Lecture Series

- 1. Polarized Light and the Dielectric Tensor
- 2. Analyzing Ellipsometric Angles and Mueller matrices Reflection of Light by Stratified Planar Structures Berreman 4 by 4 formalism (including anisotropy) See slides from other sources.
- 2. Lorentz and Drude Models: Infrared Response of Free Carriers and Metals; and Lattice Vibrations (Optical Phonons)
- 3. Interband Electronic Transitions: Electronic Band Structure of Crystalline Solids

References:

- Landau/Lifshitz: Electrodynamics of Continuous Media; or Jackson: E&M
- Ashcroft & Mermin: Solid-State Physics
- Mildred Dresselhaus *et al.*: Solid-State Properties
- Yu and Cardona: Fundamentals of Semiconductors
- Mark Fox: Optical Properties of Solids
- Cohen/Chelikowsky: Electronic Structure and Optical Properties

- Palik: Handbook of Optical Constants (three volumes)
- Short Course Lectures from instrument suppliers and other sources.

BE BOLD. Shape the Future.

Lecture 1 Outline: Polarized Light and the Dielectric Tensor

- Spectroscopy, Instrumentation, Bohr Model, Band Structure of Germanium
- Maxwell's Equations in Fourier Space
- Propagation of Light in Vacuum: Plane Waves
- Jones and Stokes Vectors
- Reflection of Light: Jones and Mueller Matrices
- Dielectrics: Electrodynamics of Continuous Media; Optical Constants
- Propagation of Light in Solids: Inhomogeneous Plane Waves, Crystal Optics

Lecture 2 Outline: Lorentz and Drude Models: Infrared Response of Free Carriers and Lattice Vibrations (Optical Phonons)

- Lorentz Model
- Drude Model
- Classification of Phonons based on Crystal Symmetry
- Infrared-Active Optical Phonons (Lattice Vibrations)
- Free-Carrier Infrared Absorption
- Optical Properties of Metals (Interband Transitions)

BE BOLD. Shape the Future.

AC Response Function, Dielectric Function

How does a dielectric respond to an electromagnetic wave?

$$\vec{E}(\vec{r},t) = \vec{E}_0 \exp\left[i\left(\vec{k}\cdot\vec{r} - \omega t\right)\right]$$

Polarization may be delayed. Polarization may be non-local.

$$\vec{P}(\vec{r},t) = \varepsilon_0 \int_{-\infty}^{t} \chi_e(\vec{r}',\vec{r},t',t)\vec{E}(\vec{r}',t')dt'd^3\vec{r}'$$

Time invariance
Infinite homogeneous crystal

$$\vec{P}(\vec{r},t) = \varepsilon_0 \int_{-\infty}^{t} \chi_e(\vec{r}'-\vec{r},t'-t)\vec{E}(\vec{r}',t')dt'd^3\vec{r}'$$

Use convolution theorem for Fourier transforms

$$\vec{P}(\vec{k},\omega) = \varepsilon_0 \chi_e(\vec{k},\omega) \vec{E}(\vec{k},\omega)$$
$$\vec{D}(\vec{k},\omega) = \varepsilon_0 \varepsilon(\vec{k},\omega) \vec{E}(\vec{k},\omega)$$

Dielectric function ϵ depends on frequency ω (dispersion).

Lorentz Model for Oscillating Charges

Lorentz Model (Dielectric Function)

Peak of ε_2 at ω_0 Broadening γ Amplitude $\omega_P^2 = A \omega_0^2$ Dimensionless $A = \varepsilon_s - \varepsilon_\infty$ ε_2 is never negative ε_1 has a wiggle at ω_0 Longitudinal solution for

 ϵ_1 negative from ω_0 to ω_1

 $\omega_L = \sqrt{\omega_0^2 + \omega_P^2 - i\gamma} \approx 6.7 \text{ eV}_{\text{iture.}}$

$$\sum_{i=1}^{15} \frac{\omega_{0}}{\varepsilon_{s}=5}$$

$$\sum_{i=1}^{i} \frac{\omega_{0}}{\varepsilon_{i}}$$

$$\sum$$

F. Wooten, Optical Properties of Solids, 1972

Lorentz Model (Complex Refractive Index)

Peak of k shifted $(>\omega_0)$ k is asymmetric n and k always positive n \rightarrow 1 at large energies n<1 above ω_0 , below ω_L (Reststrahlen band, high reflectance, plasmonics) Normal dispersion: dn/dE>0 Anomalous dispersion: dn/dE<0

Lorentz Model (Absorption Coefficient)

Peak of α shifted (> ω_0). α is always positive. α is asymmetric. Fast rise, slow drop.

$$ω_0$$
=3 eV, γ=0.5 eV, $ω_p$ =6 eV

Lorentz Model (Loss Function)

The loss function **Im(–1/ε)** peaks at the longitudinal frequency.

$$\omega_L = \sqrt{\omega_0^2 + \omega_P^2 - i\gamma} \approx 6.7 \text{ eV}$$

BE BOLD. Shape the Future.

Lorentz Model (Optical Conductivity)

The optical conductivity has a peak at the resonance frequency.

Re(σ), Im(ϵ): Dissipation Im(σ), Re(ϵ): Dispersion **j**= σ **E** Absorption is a resonant current.

Drude Model for Free Carriers

Drude Model for Free Carriers (Dielectric Function)

- Both ε_1 and ε_2 diverge at $\omega=0$ Broadening γ $\epsilon_1 \rightarrow 1$ at large energies
- $\epsilon_2 \rightarrow 0$ at large energies

$$\omega_L = \sqrt{\omega_P^2 - i\gamma} \approx \omega_P = 3 \text{ eV}$$

 ε_1 negative from ω_0 to ω_1 Real/imaginary part has factor γ/γ

$$\frac{2}{\omega} - \frac{1}{2} + \frac{1$$

Bad metal

 $n = \frac{\omega_P^2 \epsilon_0 m_0}{\hbar^2 c^2} = 6.5 \times 10^{21} \text{ cm}^{-3}$

 $\varepsilon(\omega)$

Drude Model for Free Carriers (Refractive Index)

Both n and k diverge at $\omega=0$ Broadening γ n drops off faster than k n, k always positive

n→1 at large energies n<1 at large energies (important for XRR) v_{phase} >c if n<1 n drops up to ω_P , then rises.

 $k \rightarrow 0$ at large energies

Drude Model (Absorption Coefficient)

 $\alpha \rightarrow 0$ as E $\rightarrow 0$.

- Peak around $\omega_p/2$
- Small α above ω_{P} . $\alpha \rightarrow 0$ as $E \rightarrow \infty$
- Metals become nearly transparent above the plasma frequency.

Reflectance minimum at ω_P.

$$\varepsilon(\omega) = 1 - \frac{\omega_P^2}{\omega^2 + i\gamma\omega}$$

Drude Model for Free Carriers (Loss Function)

The loss function $Im(-1/\epsilon)$ peaks at the longitudinal frequency

$$\omega_L = \sqrt{\omega_P^2 - i\gamma} \approx \omega_P = 3 \text{ eV}$$

Drude Model (Optical Conductivity)

 γ_D, γ_0 broadenings of free and bound charges

Α

amplitude of bound charge oscillations (density, strength)

Drude-Lorentz Model: Free and Bound Charges

Mid-infrared spectral range:

- Insulator/semiconductor: Lattice vibrations (optical long-wavelength phonons)
- Metal: Free carrier properties (density, scattering rate)

Near-IR to visible to UV range:

- Electronic excitations
- Band gap, interband transitions

s Series 2

Metals: Calculate Plasma Frequency

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
1	1 1 H Hydrogen 1.02794	Atomic # Symbol Name Atomic Mass	С	Solid				Metals			Nonmet	als						2 ³ He Helium 4 002002	1
2	3 i Lihum 0.941	4 2 Be Bery/Sum 8.012182	H	Liquid Gas		Alkali me	Alkaline earth me	Lanthanoi	netals	Poor me	Other	Noble ga	5 B Bolen 10.811	6 C Cathler 12.0107	7 N Nutrigen 14 2007	8 å O Drygen 10 3994	9 F F Pluome 13.9564032	10 8 Ne Neph 20,1797	Υ.
3	11 Na Sodum 22.95976928	12 ² Mg Magnesium 24.3050	R	Unknow	'n	tals	tals	Actinoids	-	tals	ō	ISes	13 Al Alumicium 26.9815386	14 Si Shinan 23.005	15 P Priskeliensk 30.973782	16 3 Sulfar 51.165	17 Cl 25463	18 Ar Argon 39.948	R-N
4	19 K Potassum 39.0963	20 28 Ca Calcium 40.078	21 Scandium 44 355912	22 88 99 99 99 99 99 99 99 99 99 99 99 99	23 V Variadium 50,9415	24 Cr Chromium 51,9901	25 Mn Manganese 54 838045	26 Fe Inon 85 845	27 Co Cobat 58.933195	28 Ni Nickel 50.0934	2 29 2 Copper 53 548	30 Zn 280 85.38	31 Ga Gallum 19 72)	32 Ge Gemanium 72.84	33 As Atsano 74 82169	34 Se Salantum	35 Br Bromine 75 904	36 Kr Kypton 10,795	Rubby
5	37 Rb Rubidium 85 4878	38 Sr Strontium 87.62	39 50 Y 10 98.90565	40 sa sta sta sta sta sta sta sta sta sta	41 Nb Notium 92,90838	42 Molybdenum 95.90	43 Tc Technetium (97.9072)	A4 Ruthenium no1.07	45 Rh Rhodum 102.90550	46 Pd Paladum 100.42	47 Ag Silver 107.8882	48 Cd Gadmium 112.411	49 In Indiam 114.815	50 Sn 115.710	51 Sb Antimony 121.760	52 Te	53 lotine 125:50447	54 Xe Xenon 131 293	DABLA
6	55 Cs Caeseum 132,9054619	56 38 Banum 137.327	57-71	72 18 Hf 178.49	73 Ta Tantalum 180.94788	74 18 10 Tungasen 183.84	75 Re Rhenlum 186.207	76 Os Osman 190.23	77 indium 102 2117	78 Pt Ptatinum 185.064	79 10 10 10 10 10 10 10 10 10 10 10 10 10	80 Hg Mercury 200.69	81 Ti Thansum 204.3833	82 Pb	83 Bi 5 Biemuth 205 96040	84 Potanium (208.9524)	85 At 41 Astatine (209.3071)	86 Rn Rašon (222,0176)	BOZEra
7	87 15. Fr 300 Fradolum 1 (223)	88 82 15 12 11 15 12 15	89–103	104 28 Rt 32 Richartochen 10 (281)	105 Db Dubrium (282)	106 18 50 50 52 52 52 52 52 52 52 52 52 52 52 52 52	107 Bh Bohrium (284)	108 Hassium (277)	109 Mt strain (266)	110 DS Demstadium (271)	111 182 192 10 111 10 111 10 111 10 10 10	112 Uub Unumbum (265)	113 Uut Ununthum (214)	114 Uuq Uurşatim (29)	115 Uup Uniperten (284)	116 Uun Umunhasium (292)	117 Uus Uhurseptum	118 Ulio Linunoostum (294)	6 nostra
				F	For eler	ments wit	th no sta	able isoto	opes, the	mass	number o	of the iso	tope wit	h the lor	igest ha	If-life is i	n parenti	neses.	
			Design and Interface Copyright © 1997 Michael Dayah (michael@dayah.com). http://www.ptable.com/																
1	D	bla		57 58 La 58 Lanthanum 2 135,90547	58 Ce Cenum 140.110	59 Pr Pr Hamesolymern 140 90765	60 Nd Neodymium 144.242	61 10 10 10 10 10 10 10 10 10 1	62 Sm 19 Samanum 150 36	63 Eu Europium 151.904	64 18 Gd 32 0adolmum 197.25	65 Tb Terblum 155.52535	66 Dy Dyspresum 162.500	67 Ho Holmum 194,93032	68 Er Erbium 107 259	69 Tm 30 Thuisum 103, 93421	70 100 100 100 100 100 100 100 100 100 1	71 1 Lu 1 Lutetum 174 9005	
		com		89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	

21

Atomic Radius

Atomic radius decreases to the right, increases downward.

STATE BE BOLD. Shape the Future.

	(Unscreened) Plasn	na Fr	eque	ency		
18 16	 alkali (valency 1) alkaline earth (valency 2) Al (valency 3) noble metals (valency 1) Al 	2 2 2 0				
(√ 9) ⁴ 0		Metal	Valency	$N (10^{28} \mathrm{m}^{-3})$	$\frac{\omega_{\rm p}/2\pi}{(10^{15}{\rm Hz})}$	$\lambda_{\rm p}$ (nm)
4 12	- Cu Ma	Li (77 K)	1	4.70	1.95	154
10	■Cu, Mg	Na (5K)	1	2.65	1.46	205
10	Aq.Au	K (5K)	1	1.40	1.06	282
8		Rb (5K)	1	1.15	0.96	312
6	_Na Ca,Li	Cs(5K)	1	0.91	0.86	350
4	Cs.Rb.K	Cu	1	8.47	2.61	115
2	5 10 15 20 25	Ag	1	5.86	2.17	138
	5 5 10 15 20 25	Au	1	5.90	2.18	138
	n (10 ²² cm ⁻³)	Be	2	24.7	4.46	67
	ancy determined by row in period table	Mg	2	8.61	2.63	114
val	ency determined by row in period table.	Ca	2	4.61	1.93	156
Ato	mic radius decreases from K to Ca to Cu.	Al	3	18.1	3.82	79

Fox, Table 7.1

STATE BE BOLD. Shape the Future.

Free-Carrier Reflection/Absorption in Metals

Transparent Alkali Metals Above ω_P

Bands of Total Reflection

- Occur below plasma frequency and between TO/LO energies. Increased sensitivity to weak absorption processes.
- $\varepsilon(\omega) = 1 \frac{\omega_P^2}{\omega^2 + i\nu\omega}$ Drude model: $\varepsilon(\omega) = 1 - \frac{\omega_P^2}{\omega^2}$ (real, negative) Small damping ($\gamma << \omega_{\rm P}$): Low frequency ($\omega < \omega_{\rm P}$): $\varepsilon(\omega) < 0$ Refractive index ($\omega \ll \omega_{\rm P}$): $\tilde{n}(\omega) = \sqrt{\varepsilon(\omega)} \approx ik$ (purely imaginary)
- Reflectance at 90° ($\omega < \omega_P$):

$$R_{90}(\omega) = \left|\frac{n+ik-1}{n+ik+1}\right|^2 = \left|\frac{ik-1}{ik+1}\right|^2 = \frac{(ik-1)(-ik-1)}{(ik+1)(-ik+1)} = 1$$
 Lectures Series 2

Free-Carrier Reflection in Ag and Al

below $\omega_P=9 \text{ eV}$ (above 138 nm) Sharp drop above ω_P . Damping.

BE BOLD. Shape the Future.

Al has three electrons $(3s^2, 3p^1)$ High reflectance below ω_P =15.8 eV (above 78 nm) Sharp drop above ω_P . Damping, interband absorption.

Stefan Zollne Fox, Optical Properties of Solids

Free-Carrier Reflection in Al

Interband transitions at W cause absorption band at 1.5 eV, lowers reflectivity.

See also: G. Jungk, Thin Solid Films 234, 428 (1993).

Al has three electrons $(3s^2, 3p^1)$ High reflectance below $\omega_P = 16 \text{ eV}$ (above 78 nm) Sharp drop above ω_P . Damping, interband absorption.

NM state

BE BOLD. Shape the Future.

Stefan Zollne

Free-Carrier Reflection in Cu

Noble metal, $4s^1$, $\omega_P = 10.8 \text{ eV}$ Transitions from 3d to 4s at 2 eV (near L and X). Similar for Ag, Au.

Fox, Optical Properties of Solids

BE BOLD. Shape the Future. Stefan Zollner, 2023, AFRL Lectures Series 2

Plasmon Resonance in Gold Nanoparticles

Gold is not always yellow. Nanoparticle radius $a < \lambda$

$$\alpha = 4\pi a^3 \frac{\varepsilon_m - \varepsilon_d}{\varepsilon_m + 2\epsilon_d}$$

m: metal, d: dielectric Enhance molecular absorption.

Fox, Optical Properties of Solids Little, APL 98, 101910 (2011)

Plasmon Resonance in β**-Tin Nanoparticles**

Ge-Sn alloys with high tin content "have a broadened peak in ε_2 , near 0.9 eV."

"possibly caused by an intrinsic feature such as from the band structure, an extrinsic one such as from a defect, or an interference fringe from the substrate".

Answer:

None of the above. This peak is likely a **plasmon resonance** of metallic β -Sn precipitates.

D. Imbrenda, APL 113, 122104 (2018)

Plasmon Resonance in β**-Tin Nanoparticles**

This Lorentzian peak is likely a

plasmon resonance of metallic β -Sn precipitates.

Dielectric Function of Transition Metals (Pt)

The dielectric function of Pt deviates from the Drude model below 1 eV due to d-interband transitions. Pt is **not a noble metal**, partially filled d-shell.

STATE DE DOLD. Shape the Future.

S. Zollner, phys. stat. solidi (a) 177, R7 (2000)

Dielectric Function of Transition Metals (Ni)

Thickness Dependence of Dielectric Function (Ni)

Ola Hunderi, PRB, 1973

 $\sigma_1 \uparrow$ with t \uparrow reduced grain boundary scattering in thicker films

L. Abdallah, AIP Adv. 4, 017102 (2014)

Difference between Ni and Pt

Ni 3d states are more localized. Pt 5d states are broader, more dispersive.

Ni-Pt alloys have broader transitions than pure Ni.

- Alloy broadening: Potential fluctuations
- Initial Pt 5d states broader than Ni 3d states.

L. Abdallah, AIP Adv. 4, 017102 (2014)

FRL Lectures Series 2
Semiconductors

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
1	1 1 H Hydrogen 1.02794	Atomic # Symbol Name Atomic Mass	C Solid			Metals					Nonme	etals						2 ³ He Helium + 002002	*
2	3 T	4 2 Be Beryllum 9.012182	Hg Liquid		Poor metals Transition metals Lanthanoids Alkaline earth metals		Lanthanoid	metals	Poor me	Noble ga Other		5 B Biology 10.811	6 C Datbler: 12:0107	7 E	8 1 O Crygen 12 seel	9 F Fluome 13.9684032	10 Ne Neon 20.1797		
3	11 Na Bodium 22.95976928	12 20 Mg Magnasium 24.3050	Rf Unknown				Ses		13 Al Aluminium 26.8815385	14 Silaan 29.0855	15 P Prinkational 30 ar/3762	16 3 Sulfar States	17 Cl 25463	18 Ar Argon 35.948	KLY				
4	19 K Potassium 39,0963	20 28 Ca Calcium 40.078	21 50 Scandium 44 355912	22 10 10 10 10 10 10 10 10 10 10 10 10 10	23 11 V 12 Vanadium 50,8415	24 Cr Chromium 51,9901	25 Mn Manganase 54 838045	26 State	27 58 933195	28 Ni Nickel 58.8954	29 10 Copper 53.548	30 Zn 280 05.38	Gallum 19723	32 Ge Germanium 72.64	33 As Arsenio 74 82109	34 and a search an	35 Br Bromine 79.964	36 Kr Krypton 63,796	R. 11 M
5	37 5 Rb Rubidium 85 4878	38 \$ Sr \$ Strontum 87.62	39 5 Y 5 Ytthum 88.90565	40 Secondaria	41 88 Nobum 92.90838	42 Mo Molybolenum 95.98	43 TC Teohnetium (97.9072)	44 Ru Ruthenum 101.07	45 18 Rh 102 90550	46 Pd Paladum 100.42	47 Ag Silver 107.8882	48 Cd Catmium 112.411	49 In Indium 114.818	50 Sn ^{7ie} 116.710	51 Sb Antimory 121.760	52 8 Te 8 127.60	53 I doline 125 50447	54 14 Xe 15 Xeron 131 293	OPENX
6	55 15 15 15 15 15 15 15 15 15 15 15 15 1	56 18 15 15 15 15 15 15 15 15 15 15 15 15 15	57-71	72 2 15 15 15 15 15 15 15 15 15 15 15 15 15	73 Ta Tantalum 160 94788	74 W Tungaten 183.84	75 Re Rhanlum 186.207	76 OS Camilan 190.23	77 28 Ir 82 Indum 2 192.217	78 Pt Plasinum 195.064	79 Au 560d 190, 900609	BO Hg Mercury 200.69	81 Tl Thailium 204 3833	82 Pb	Bi Bismuth 208 96040	84 Po Petanium (208.9824)	85 At Astatine (200.1071)	86 87 88 88 88 88 88 88 88 88 88 88 88 88	NOZZEN
7	87 15 Francium 10 Francium 1 (223)	88 28 Ra Radium 27 (226)	89–103	104 20 10 20	105 Db Dubrium (282)	106 Sg Seaborgium (286)	107 Bh Bohrium (284)	108 HS Hassian (277)	109 18 Mt 82 Metnerum 19 (206)	110 DS Demototium (271)	111 182 111 Rg Roengerium (272)	112 112 UUD Unorbian (246)	113 Unuttuer (294)	114 Uuq Uurquatim (28)	115 Uup Uurpartun (28)	116 Uun Umuntessum (292)	117 Uus Urunseptum	118 Ulio Ununcotium (294)	e-score.

For elements with no stable isotopes, the mass number of the isotope with the longest half-life is in parentheses.

THE PROPERTY OF THE TAXABLE POINT

	Design and interface Copyright @ 1997 Michael Dayan (michael@dayan.com). http://www.ptable.com/													
57 58 La lanthanum 136.90047	58 Ce Cenum 140.116	59 10 10 10 10 10 10 10 10 10 10 10 10 10	60 100 100 100 100 100 100 100 100 100 1	61 20 Pm 20 Promethium 2 (145)	62 50 Sm 34 Samanum 150.38	63 18 Eu 18 Europium 151.904	64 18 18 18 18 18 18 18 18 18 18 18 18 18	65 5 Tb 27 Terblum 155.92535	66 25 Dy 25 Dyspresium 162,500	67 5 Ho 10 Holmum 154.93032	68 20 Er 30 Erburn 2 187.259	69 30 Tm 30 Thulum 108.93421	70 100 100 100 100 100 100 100 100 100 1	71 Lu 3 Lutetium 174.9885
89 AC Actinium (227)	90 78 18 18 18 18 18 18 18 18 18 18 18 18 18	91 Pa Protactinium 231.03588	92 5 U 52 Uramium 235.02891	93 78 55 229 22 Neptunium (237)	94 55 Pu 51 Plutonium 22 (244)	95 Am Americaum (243)	96 Cm Curium (247)	97 50 50 50 50 50 50 50 50 50 50 50 50 50	98 Cf Cxiiforhum (251)	99 53 Es 55 Ensteinum 2 (252) 2	100 100 100 100 100 100 100 100 100 100	101 States	102 No Nobelium (259)	103 Lr Lawrencium (262)

Free-Carrier Reflection in Doped Semiconductors

lower carrier density; plasma frequency in infrared region.

Why Infrared Ellipsometry ?

Advantages:

- Measures amplitude ψ and phase Δ .
- Direct access to complex ε (no Kramers-Kronig transform).
- Modeling may contain depth information.
- No need to subtract substrate reference data.
- Anisotropy information (off-diagonal Jones and MM data)
- Possible measurements in a magnetic field (optical Hall effect)
- Obtain plasma frequency and scattering rate (B=0)
- Obtain *carrier density*, scattering rate, *effective mass* (B≠0).
 <u>Disadvantages:</u>
- Time-consuming (15 FTIR reflectance spectra)
- Requires polarizing elements (polarizer, compensator)
- Requires large samples (no focusing), at least 5 by 10 mm²
- Requires modeling for thin layer on substrate.
- Commercial instruments only down to 30 meV (250 cm⁻¹)

 γ_D, γ_0 broadenings of free and bound charges

Α

amplitude of bound charge oscillations (density, strength)

Drude-Lorentz Model: Free and Bound Charges

Mid-infrared spectral range:

- Insulator/semiconductor: Lattice vibrations (optical long-wavelength phonons)
- Metal: Free carrier properties (density, scattering rate)

Near-IR to visible to UV range:

- Electronic excitations
- Band gap, interband transitions

s Series 2

41

Infrared Ellipsometry of Doped Semiconductors

Doped semiconductors behave just like a metal, except for the lower carrier density; plasma frequency in infrared region. Only visible for electrons (small mass).

Coupled Phonon-Plasmon Bands

$$\varepsilon(\omega) = 1 - \frac{\omega_P^2}{\omega^2 + i\gamma\omega}$$

Doped GaAs: Plasmon effect:

Doping pushes LO phonon to higher energies. TO phonon not affected by plasma oscillations.

Undoped GaAs: 30 meV lower cut-off insufficient to see Drude term.

> Zollner, J. Vac. Sci. Technol. B **37**, 012904 (2019). Kukharskii, Fiz. Tverd. Tela **14**, 1744 (1972) [Sov. Phys. Solid State **14**, 1501 (1972). Mooradian, Phys. Rev. Lett. **16**, 999 (1966).

Doped semiconductors behave just like a metal, except for the lower carrier density; **plasma frequency in infrared region.**

Optical Hall Effect: Ellipsometry with Magnetic Field

If we measure Mueller matrix spectra in a magnetic field, we get **carrier concentrations**, **mobilities**, <u>effective masses</u>.

Multi-Valley Semiconductors

GaSb is a direct semiconductor (like GaAs), but ALMOST indirect. The L-valley in GaSb is only 80 meV above the Γ -valley. Almost all electrons are in the L-valley at

We need a model with two carrier species, one of them anisotropic.

Multiple Drude Contributions

 Electron mass depends on orbital (s, p, d, f)

s: light (small mass m*<<1) p: intermediate (m*~0.3 to 1) d,f: heavy (large mass m*>>1) p,d,f: usually anisotropic

P. Drude, Phys. Z. 1, 161 (1900).

- Electrons and holes
- Different CB minima (Γ,L,X)
- Different VB hole bands (light, heavy, split-off)

CB: Conduction band (empty)

fan Zoll VB: Valence band (filled)

Drude Model for Anisotropic Free Carriers

Conduction band minima in Ge and Si are anisotropic. Ge: $m_{\rm i}$ =1.59, $m_{\rm t}$ =0.0815.

$$E(\vec{k}) = \frac{\hbar^2 \vec{k}^2}{2m}$$

$$m^{-1} = \frac{1}{\hbar^2} \frac{\partial^2 E(\vec{k})}{\partial \vec{k}^2} = \begin{pmatrix} m_l^{-1} & 0 & 0\\ 0 & m_t^{-1} & 0\\ 0 & 0 & m_t^{-1} \end{pmatrix}$$

$$\overset{\Delta\text{-valley}}{\text{Drude mass}} m = \frac{3m_l m_t}{m_t + 2m_l}$$

Valence band maxima in semiconductors are warped (Luttinger parameters).

$$\varepsilon(\omega) = 1 - \frac{\omega_P^2}{\omega^2 + i\gamma\omega}$$
$$\omega_P^2 = \frac{nq^2}{m\varepsilon_0}$$

BE BOLD. Drude formula still valid, but ε , ω_p^2 , m⁻¹, and γ are tensors.

Anisotropic Masses (GaSb L-Valley)

Longitudinal mass at L Transverse mass at L

Density of states mass (geometric mean)

Drude transport mass (harmonic mean)

Cyclotron mass

Optical Hall effect measurements on anisotropic materials are sparse. Need measurements on bulk Si, Ge, GaP, SiC with different orientations (direction of magnetic field **b**). Dresselhaus, Dresselhaus, Cronin, Gomes, Solid-State Properties (10.50)

Grey α-tin is Even More Complicated

C.A. Hoffman, PRB **40**, 11693 (1989). R.A. Carrasco, APL **113**, 232104 (2018).

We need a model with THREE carrier species, one of them anisotropic. STATE BE BOLD. Snape the Future. Stefan Zollner, 2023, AFRL Lectures Series 2

Add Strain and Warping in Sn_{1-x}Ge_x Alloys

How do we model Drude response of free carriers with realistic band structures?

Insulators

Transparent region below the band gap (VIS/UV).

- Forbidden "energy gap".
- Semiconductors are insulators with small band gap (IR).
- Valence band filled. Conduction band empty.
- Filled bands do not carry current (no absorption).

CB: Conduction band (empty)

BE BOLD. Shape the Future.

Stefan Zoll VB: Valence band (filled)

51

Multiple Lorentz Contributions: IR, UV, x-ray

IR: lattice vibrations

VIS/UV: valence electrons (broadened by band structure effects)

x-ray: core electrons

Amplitude depends on

- Density of oscillators
- Matrix elements
- Born effective charge

Fox, Fig. 2.6

Stefan Zollner, 2023, AFRL Lectures Series 2

Multiple Lorentz Contributions: SiO₂ as an Example

IR: lattice vibrations (Si-O bend, stretch)

VIS: Nothing happens

UV: valence electrons (interband transitions)

x-ray: core electrons (absorption edges)

Amplitude depends on

- Density of oscillators
- Matrix elements
- Born effective charge

tefan Zollner, 2023, AFRL Lectures 🤅

53

Fox, Fig. 2.7

Sellmeier Approximation (Poles)

Refractive index

Set $\gamma = 0$ far from resonance.

Lorentz oscillator becomes a pole (Woollam SW)

$$\varepsilon(\omega) = 1 + \frac{A\omega_0^2}{\omega_0^2 - \omega^2}$$

Rewrite as a function of λ

$$\varepsilon(\lambda) = 1 + \frac{B\lambda^2}{\lambda^2 - C}$$

Several Lorentz oscillators (one in IR, two in UV)

$$\varepsilon(\lambda) = 1 + \sum_{i} \frac{B_i \lambda^2}{\lambda^2 - C_i}$$

Sellmeier approximation. W. Sellmeier, Ann. Phys. 223, 386 (1872).

Frequency (10^{15} Hz)

Cauchy Equation (Urbach Tail)

The Cauchy equation

$$n(\lambda) = \sqrt{\varepsilon(\lambda)} = A + \frac{B}{\lambda^2} + \frac{C}{\lambda^4}$$

can be viewed as a Laurent series expansion of the Sellmeier equation

$$n(\lambda) = \sqrt{\varepsilon(\lambda)} = \sqrt{1 + \frac{B\lambda^2}{\lambda^2 - C}}$$

Comments:

The Cauchy equation does not include absorption. Absorption is often included with an **Urbach tail**

$$k(E) = \alpha e^{\beta(E-\gamma)}$$

but this does not make it Kramers-Kronig consistent. Not recommended, use Tauc-Lorentz model instead.

Insulator Phonon Spectra (Ge)

C, Si, Ge, α -Sn are IR-inactive (no dipole moment)

BE BOLD. Shape the Future.

Stefan Zollner, 2023, AFRL Lectures Series 2

Infrared Lattice Vibrations (Lorentz model)

In **polar materials** (Born effective charge), TO and LO modes are split. TO: transverse optical (displacement perpendicular to **k**) LO: longitudinal optical (displacement along **k**) ε_2 has peak at TO frequency

 ϵ_1 is negative from TO to LO frequency (reflectance is 1)

Infrared Lattice Vibrations (Lorentz model)

In polar materials (Born effective charge), TO and LO modes are split.

TO: transverse optical (atomic displacement perpendicular to k)

- LO: longitudinal optical (atomic displacement along **k**)
- ϵ_2 has peak at TO frequency

 ε_1 is negative from TO to LO frequency (reflectance is 1) Restrahlen band extends from TO to LO energy.

58

Fox, Fig. 10.5

Infrared Lattice Vibrations in GaP

Infrared Lattice Vibrations (Lorentz model)

STATE

60

Lyddane Sachs Teller Relation (Lorentz Model)

Lyddane Sachs Teller Relation (Lorentz Model)

Lorentz model (γ =0) for one TO/LO phonon mode

$$\varepsilon(\omega) = \varepsilon_{\infty} + \frac{A\omega_{TO}^2}{\omega_{TO}^2 - \omega^2}$$

At zero frequency (ω =0) define static dielectric constant ε_s

$$\varepsilon_{\rm S} = \varepsilon(\omega = 0) = \varepsilon_{\infty} + A$$

Define ω_{LO} through $\varepsilon(\omega_{LO})=0$ (Longitudinal modes require $\varepsilon=0$).

$$0 = \varepsilon_{\infty} + \frac{A\omega_{TO}^2}{\omega_{TO}^2 - \omega_{LO}^2}$$

$$A = \varepsilon_{\infty} \frac{\omega_{LO}^2 - \omega_{TO}^2}{\omega_{TO}^2}$$

or $\varepsilon_{\rm S}\omega_{TO}^2 = \varepsilon_{\infty}\omega_{LO}^2$ LST relation

BE BOLD. Shape the Future.

Lyddane, Sachs, Teller, Phys. Rev. 59, 673 (1941)

Optical Phonons in Semiconductor Alloys

Two-mode behavior:

- GaP and GaAs reststrahlen bands do not overlap.
- P cannot vibrate in GaAs host.
- As cannot vibrate in GaP host.

• Outcome:

In a GaAsP alloy, there are two phonon bands: GaAs-like (low frequency reststrahlen band) GaP-like (high-frequency reststrahlen band)

- The width of these phonon bands decreases near the binary endpoints.
- The TO amplitude is related to the TO/LO splitting.
- Additional modes appear, which makes the phonon spectra very complex.

L. Genzel, phys. stat. sol. **62**, 83 (1974). O. Pages, PRB **80**, 035204 (2009).

Stefan Zollner, 2023, AFRL Lectures Series 1

Optical Phonons in GaAsP Alloys (on GaAs)

Optical Phonons in GaAsP Alloys (on GaAs)

x: P content

TO: peaks of $<\epsilon_2>$. LO: peaks of loss function

In a GaAsP alloy, there are two phonon bands: GaAs-like (low frequency reststrahlen band) GaP-like (high-frequency reststrahlen band) Amplitude scales with composition.

Additional weak modes (side bands).

Verleur & Barker, PR **149**, 715 (1966). J. Cebulski, PSSB **250**, 1614 (2013).

BE BOLD. Shape the Future.

Stefan Zollner, 2023, AFRL Lectures Series 1

Generalized Lyddane Sachs Teller Relations

Multiple phonon modes (isotropic)

$$\frac{\varepsilon_{\rm S}}{\varepsilon_{\infty}} = \prod_{i} \frac{\omega_{LO,i}^2}{\omega_{TO,i}^2}$$

Kurosawa, J. Phys. Soc. Jpn. **16**, 1298 (1961)

Anisotropic crystals

$$\frac{\det(\varepsilon_{\rm S})}{\det(\varepsilon_{\infty})} = \prod_{i} \frac{\omega_{LO,i}^2}{\omega_{TO,i}^2}$$

Mathias Schubert, Phys. Rev. Lett. 117, 215502 (2016)

Amorphous materials and liquids

$$\frac{\varepsilon_{\rm S}}{\varepsilon_{\infty}} = \frac{\langle \omega^2 \rangle_l}{\langle \omega^2 \rangle_t}$$

A.J. Sievers and J.B. Page, Infrared Physics **32**, 425 (1991)

Stefan Zollner, 2023, AFRL Lectures Series 2

Infrared Lattice Vibrations (NiO)

 Rocksalt Crystal Structure (FCC), Space Group 225 (Fm-3m). **NiO** cell • Single TO/LO phonon pair. Antiferromagnetic ordering along (111), ΤO should cause phonon splitting (8-30 cm⁻¹) 75 Second-order phonon absorption. 50 Rooksby, Nature, 1943 45 25 40 5 ε₀=11.3 35 ε_∞=5.0 30 **NiO Reststrahlen Band** 25 100 7 20 TA+TO phonon 75 15 75° SI 50 Absorption in the restrahlen band 25 Willett-Gies & Nelson, JVST A 33, 061202 (2015) Also Humlicek TSF 313-314. 600 200 400 600 800 1000 Lec 200 400 800 1000 68 687 (1998) for LiF. Energy (cm⁻¹) Energy (cm⁻¹)

Infrared Lattice Vibrations (Lorentz Model)

Wave number (cm⁻¹)

In polar materials (Born effective charge), TO and LO modes are split.

TO: transverse optical (atomic displacement perpendicular to k)

- LO: longitudinal optical (atomic displacement along k)
- ϵ_2 has peak at TO frequency

 ϵ_1 is negative from TO to LO frequency (reflectance is 1) Restrahlen band extends from TO to LO energy.

69

Fox, Fig. 10.5

Two-Phonon Absorption (Diamond)

A single photon excites two phonons. Energy and wave vector conserved. Two-phonon absorption is weak (lower probability than TO phonon absorption). **Usually too weak to be studied with ellipsometry outside of TO/LO band.** Most likely to occur near Brillouin zone boundary (high density of states).

70

es 2

Two-Phonon Absorption (GaP)

Classification of Lattice Vibrations (k=0)

- Long-wavelength (zone-center) lattice vibrations can be
- Infrared-active (transform like x, y, z)
- Raman-active (transform like xy, yz, zx or x², y², z²)
- Silent
- Transformation property can be found from point group character table.
- If there are N atoms per primitive cell, there are 3N degrees of freedom.
- 3 acoustic phonons (translation of crystal), zero energy
- 3(N-1) optical phonons

Find representations for optical phonons!

Need to know:

- Bravais lattice+basis, point group, space group
- Wyckoff positions (where are the atoms?)
- How do the symmetry operations act on the atoms? Check International Tables.
- Call N_R the number of invariant atoms for symmetry operator R
- Calculate character

$$\chi(R) = N_R (\det R + 2\cos\phi)$$

• Decompose $\chi(R)$ into irreducible representations (using characters).

Dresselhaus, Dresselhaus, and Jorio, Group Theory (Springer, 2008)

Optical Phonons in Zincblende and Wurtzite Crystals

Phonons in Complex Oxides: Perovskites

5 atoms (SrTiO₃) 4 optical phonons at Γ $3\Gamma_{15}(IR)+\Gamma_{25}(silent)$

TO phonons LO phonons

74

Hard and Soft Phonons

Typical behavior: Hard

Phonon energy decreases with temperature.

Anomalous: Soft

Phonon energy goes to zero at low temperature, drives a phase transition (collective movement of atoms)

SrTiO₃ is nearly ferroelectric ($T_c \sim 0 \text{ K}$).

LST relation $\varepsilon_{\rm S}\omega_{TO}^2 = \varepsilon_{\infty}\omega_{LO}^2$

 $\omega_{\text{TO}} \rightarrow 0 \text{ at } T_C \text{ implies } \varepsilon_s \rightarrow \infty$

V.N. Denisov, Physics Reports 151, 1 (1987)

BE BOLD. Shape the Future.

Classification of Phonons in Metal Oxides

Far-Infrared Ellipsometry (bulk LSAT)

Disordered double perovskite $(LaAIO_3)_{0.3}(Sr_2AITaO_6)_{0.35}$ Many phonon modes. Several reststrahlen bands.

Phonons in More Complex Oxides (Co₃O₄ on Spinel)

Phonon Anisotropy in β-Gallium Oxide

Kramers-Kronig Relations

$$\vec{P}(\vec{r},t) = \varepsilon_0 \int \chi_e(\vec{r}' - \vec{r},t' - t)\vec{E}(\vec{r}',t')dt'd^3\vec{r}'$$

Response function $\chi_e(\vec{r}' - \vec{r}, t' - t) = 0$ for t' > t

The charges cannot move before the field has been applied.

Kramers-Kronig relations follow:

$$\vec{D}(\vec{k},\omega) = \varepsilon_0 \varepsilon(\vec{k},\omega) \vec{E}(\vec{k},\omega)$$

$$\varepsilon_{1}(\omega) - 1 = \frac{2}{\pi} \mathscr{D} \int_{0}^{\infty} \frac{\omega' \varepsilon_{2}(\omega') d\omega'}{\omega'^{2} - \omega^{2}}$$
$$\varepsilon_{2}(\omega) = -\frac{2\omega}{\pi} \mathscr{D} \int_{0}^{\infty} \frac{\varepsilon_{1}(\omega') d\omega'}{\omega'^{2} - \omega^{2}}$$

$\oint \frac{\chi(\omega)}{\omega' - \omega} d\omega' = 0$ Re ω' Cauchy

Contour integrals in complex plane:

The real part of ε can be calculated if the imaginary part is known (and vice versa). Similar Kramers-Kronig relations for other optical constants.

80 80

Zollr Lucarini, Springer, 2005 Peries 2

Analytical Properties of the Dielectric Function

Fields $\mathbf{E}(\mathbf{r},t)$ are real quantities

Onsager relation Dielectric tensor symmetric (B=0) Also from energy density. Passive materials (no optical gain)

$$\varepsilon(-\vec{k},-\omega) = \overline{\varepsilon(\vec{k},\omega)}$$
$$\varepsilon(-\omega) = \overline{\varepsilon(\omega)}$$
$$\varepsilon(-\vec{k},\omega) = {}^{t}\varepsilon(\vec{k},\omega)$$
$$\varepsilon(\omega) = {}^{t}\varepsilon(\omega)$$
$$\varepsilon(\omega) = {}^{t}\varepsilon(\omega)$$
$$\varepsilon(\omega) \ge 0$$

Like any analytic complex function, $\epsilon(\omega)$ is defined by its zeroes and poles in the complex plane (below real axis). This implies

$$\varepsilon(\omega) = \varepsilon_{\infty} \prod_{j=1}^{N} \frac{\omega_{\text{LO},j}^2 - \omega^2 - i\gamma_{\text{LO},j}\omega}{\omega_{\text{TO},j}^2 - \omega^2 - i\gamma_{\text{TO},j}\omega} \qquad \gamma > 0 \text{ (causality)}$$
R. P. Lowndes, PRB 1, 2754

Works well for phonons and plasmons.

R. P. Lowndes, PRB 1, 2754 (1970). Berreman & Unterwald, Phys. Rev. **174**, 791 (1968). Zollner, JVST B (2019).

Comparison of Lorentz and Lowndes Models

Drude-Lorentz Model

$$\varepsilon(\omega) = 1 - \sum_{i} \frac{\omega_{P,i}^2}{\omega^2 + i\gamma_{D,i}\omega} + \sum_{i} \frac{A_i \omega_{0,i}^2}{\omega_{0,i}^2 - \omega^2 - i\gamma_{0,i}\omega}$$

Lowndes Model

$$\varepsilon(\omega) = \varepsilon_{\infty} \prod_{j=1}^{N} \frac{\omega_{\text{LO},j}^2 - \omega^2 - i\gamma_{\text{LO},j}\omega}{\omega_{\text{TO},j}^2 - \omega^2 - i\gamma_{\text{TO},j}\omega}$$

Drude terms: Poles on the imaginary axis ($\omega_0=0$) Additional broadening parameter for LO phonon. **Lorentz identical to Lowndes model, if** $\omega_{TO}=\omega_{LO}$. Otherwise: **Frictional force allowed to vary with velocity.** Complex Lorentz amplitude, frequency-dependent damping. Lowndes model makes no assumptions about forces.

BE BOLD. Shape the Future.

Stefan Zollner,

R. P. Lowndes, PRB 1, 2754 (1970). Berreman & Unterwald, Phys. Rev. **174**, 791 (1968). Zollner, JVST B (2019).

Anharmonically Broadened Lorentzian

Drude-Lorentz Model

Lowndes Model

$$\varepsilon(\omega) = 1 + \sum_{i} \frac{A_i \omega_{0,i}^2}{\omega_{0,i}^2 - \omega^2 - i\gamma_{0,i}\omega}$$

$$\varepsilon(\omega) = \varepsilon_{\infty} \prod_{j=1}^{N} \frac{\omega_{\text{LO},j}^2 - \omega^2 - i\gamma_{\text{LO},j}\omega}{\omega_{\text{TO},j}^2 - \omega^2 - i\gamma_{\text{TO},j}\omega}$$

Anharmonically broadened Lorentzian

$$\varepsilon(\omega) = 1 + \sum_{i} \frac{A_i \omega_{0,i}^2 - ib\omega}{\omega_{0,i}^2 - \omega^2 - i\gamma_{0,i}\omega}$$

GenOsc2 layer in Woollam software.

$$b = \varepsilon_{\infty}(\gamma_{L0} - \gamma_{T0})$$

Schubert group ICSE 2022 (Beijing)

Summary

- Drude model explains optical response of metals.
- High reflectance below the plasma frequency.
- Interband transitions overlap with Drude absorption.
- Doped semiconductors have infrared plasma frequencies.
- Lorentz model explains infrared lattice absorption.
- TO/LO modes result in **reststrahlen band**.
- Multiple modes for complex crystal structures or alloys.

BE BOLD. Shape the Future.

Thank you!

Questions?

